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Abstract. The German Bight located within the central North Sea is a hydro- and morphodynamically highly complex 10 

system of estuaries, barrier islands and part of the world’s largest coherent tidal flats, the Wadden Sea. To identify and 

understand challenges faced by coastal stakeholders, such as harbor operators or governmental agencies, to maintain 

waterways and employ numerical models for further analyses, it is imperative to have a consistent data base for both 

bathymetry and surface sedimentology. Current commercial and public data products are insufficient in spatial and temporal 

resolution and coverage for recent analyses method. Thus, this first part of a two-part publication series of the German joint 15 

project EasyGSH-DB describes annual bathymetric digital terrain models in a 10 m gridded resolution for the German North 

Sea coast and German Bight from 1996 to 2016 (Sievers et al., 2020a, 10.48437/02.2020.K2.7000.0001), as well as surface 

sedimentological models of discretized cumulative grain size distribution functions for 1996, 2006 and 2016 on 100 m grids 

(Sievers et al., 2020b, 10.48437/02.2020.K2.7000.0005). Furthermore, basic morphodynamic and sedimentological 

processing analyses, such as the estimation of e.g. bathymetric stability or surface maps of sedimentological parameters, are 20 

provided (Sievers et al., 2020a, 2020b, see respective download links).   
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1 Introduction 

The German Bight and the adjacent central North Sea (Figure 1) are highly complex systems of barrier islands, the world’s 

largest coherent system of coastal tidal flats and multiple estuaries (Elias et al., 2012; Kabat et al., 2012; Benninghof and 

Winter, 2019). Recent research interest frequently focuses on the morpho- and hydrodynamic processes in this area, e.g. 25 

Elias et al. (2012), Zijl et al. (2013), Heyer and Schrottke (2015), Wang et al. (2015) and Benninghof and Winter (2019). For 

this, numerical models of various implementations require input parameters gained from e.g. bathymetric or 

sedimentological data sets to gain further insight and understand longer term processes (Zijl et al., 2013; Arns et al., 2015; 

Wang et al., 2018; Rasquin et al., 2020) such as the sea level rise. Harbor operators for small- and large-scale maritime 

economy and tourism and other marine actors need to be able to identify, understand and potentially counteract changes and 30 

developments to the coastline and estuaries and its surface sedimentology to maintain and operate within a profitable margin 

as well as be prepared for potential hazardous situations (Roeland and Piet, 1995; Kirichek et al., 2018; Wölfl et al., 2019; 

Kiricheck et al., 2020). Additionally, further applications that are not directly obvious are dependent on bathymetric 

information, such as search efforts in open-sea scenarios (Wölfl et al., 2019). It is thus vital to have a consistent set of high-

resolution elevation and surface sediment information.  35 

Currently available data sets are still highly volatile in spatial and temporal resolution and coverage are compiled in publicly 

accessible portals and services (Wölfl et al., 2019). Portals and services such as EMODnet Bathymetry (www.emodnet-

bathymetry.eu), GEBCO (www.gebco.net) or ETOPO (www.ngdc.noaa.gov) offer bathymetric data sets with spatial 

resolutions of 70 m to approximately 2 km, depending on the overall spatial coverage, yet in part no certain indication about 

important quality elements, such as currentness or timeliness and traceability or data source, of the utilized data set. Surface 40 

sedimentological information of the central North Sea are coarse for the application in numerical models with spatial 

resolutions of approximately 2 to 13 km with predetermined classifications and analyses such as median grain diameter 

already performed and provided by e.g. Helmholtz Zentrum Geesthacht (coastmap.hzg.de), EMODnet Geology 

(www.emodnet-geology.eu) or Wilson et al. (2018), which hinders custom extraction of parameters such as sorting or 

skewness coefficients or grain size classes that for numerical models. Portals for individual data publication, such as Pangaea 45 

(www.pangaea.de), usually offer local data sets at a high resolution. However, a low overall coverage results in a decrease of 

larger scale scientific value, as region-specific availability and consistency issues with adjacent data exist. Apart from spatial 

resolution and coverage issues, temporal information is in part inconsistent or unavailable. For hydro- and 

morphodynamically highly dynamic regions such as the German North Sea coast, a specific date or time span of validity is 

essential to adequately analyze the occurring processes. German joint project AufMod began the process of alleviating these 50 

issues with both increased temporal and spatial coverage and resolution (Heyer and Schrottke, 2015). Bathymetric regular 

50 m gridded digital terrain models (DTMs) were provided from 1982 to 2012 for the inner German Bight as well as surface 

sedimentological information including full discretized cumulative grain size distribution (GSD) functions for individual 

further processing in a 250 m grid resolution (Milbradt et al., 2015). However, state-of-the-art modeling studies deploy 
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horizontal grids and meshes for bathymetry and sedimentology that require an even higher resolution than AufMods initial 55 

steps (Zijl et al., 2013; Kösters and Winter, 2014; Hagen et al., 2019; Rasquin et al., 2020; Hagen et al., 2021, in review). 

With AufMod ending in 2012, the data coverage is outdated. 

This paper, as part one of a two-part publication, introduces an integrated data collection created in the German project 

EasyGSH-DB, which includes geomorphological and surface sedimentological products and analyses in a higher temporal 

and spatial resolution than previous products: 21 annual bathymetric terrain models spanning 1996 to 2016 as a 10 m regular 60 

grid and 3 surface sediment models of GSD functions valid for 1996, 2006 and 2016 on a 100 m grid are presented for the 

German Bight (Figure 1). Additionally, the larger German Exlusive Economic Zone (AWZ) is covered in a 100 m 

bathymetric and 250 m surface sedimentological grid of continuous GSD functions. Additionally, basic further processing 

steps, such as generation of elevation isobaths, bathymetric analyses and sedimentological maps and parameters, are 

provided as well.  65 

Part two of this publication (Hagen et al., 2021, in review) displays hydrodynamic numerical modeling results based on the 

base data presented hereafter. All data products are available for free download, if applicable, provided with additional meta 

data for quality and usability assessment. 

 

 70 

Figure 1: Spatial extent of the German Bight with EasyGSH-DBs product zone (EPZ) and larger German Exclusive Economic 

Zone (AWZ) within the North Sea, with a bathymetric model of 1996. Positions of major estuaries given for reference. 
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2 The Methodological Framework of the Functional Seabed Model (FSM) 

Usually, the only way to obtain data valid for a specific date is to measure it at that specific point in time. Studies to 

undertake surveys in a very high, quasi-continuous, temporal resolution alleviate this issue, they are, however, generally very 75 

small scale or on singular transects (Gallagher et al., 1998; Moulton et al., 2014). Concepts to temporally interpolate 

hydrographic and bathymetric information between fewer temporal sample points to reduce time and costs of such studies 

are well known (Moulton et al., 2014; Kuusela et al., 2018; Genchi et al., 2020), yet still focus on singular series of samples 

of an isolated area. Missing synoptic analysis bringing together multiple such surveys of varying types and resolutions from 

different points in time and space classify most of these data sets as the previously mentioned highly regionalized 80 

individually published information. As digital terrain models (DTMs) today already aggregate data and employ spatial 

interpolation to create high coverage information, the next step is combining spatial and temporal interpolation of multiple 

data sets to create not only a spatially but also temporally continuous model space for numerous applications. 

2.1 Introduction to the Functional Seabed Model 

The Functional Seabed Model is a holistic data-based hindcast simulation model (Milbradt et al., 2015) and was first utilized 85 

in larger scale in joint project AufMod, (Heyer and Schrottke, 2015) to provide consistent DTMs and base data for numerical 

modelling and morphodynamic analyses from multiple data sets originating from separate surveys for user defined spatial 

and temporal extent and validity.  

 

 90 
Figure 2: Spatial extent of FSM database, (a) overlapping bathymetric datasets, (b) surface sedimentological datasets represented 

by continuous GSD functions. 
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In its current form, input data and thus spatial and temporal range cover primarily Germany, the Southern and Central North 

Sea and the British Isles from the early 1950s until today. Its data base contains approximately 127,000 elevation data sets 

with 115 billion single data points (Figure 2a) and approximately 95,000 surface sediment samples represented by 95 

continuous grain size distribution (GSD) functions (Figure 2b), to meet requirements of advanced model systems as 

described in part two of this publication (Hagen et al., 2021, in review). Approximately 45,000 surface sediment samples are 

located within the AWZ. For the highest attainable transparency of provenance of our products, each individual bathymetric 

and sedimentological data set hat metadata attached, which include among others sample title, source organization and 

survey time as either an isolated instance or a temporal span. 100 

Both bathymetric and surface sedimentological surveys create information at isolated points, thus interpolation and 

approximation methods are applied to create spatially continuous products for specific points in time. As surveys have 

varying purposes, they are undertaken as various survey types and a consequence, the structure of the initial processed data 

set is highly variable as well. Consequently, the anticipated quality of spatial representation is highly dependent on the 

applied approximation or interpolation method itself. While linear interpolation may be sufficient in high-density surveys, 105 

they might not be adequate in other cases. This is where the FSMs ability to connect geometric data sets to metadata is of 

utmost importance. The aforementioned metadata information contains not only trivial entries such as the descriptive 

attributes but also information about the method that is to be utilized for spatial interpolation of the specific data set in 

question, including parameters such as search radii or required point counts. A small, non-exhaustive example of this survey 

type dependent approximation and interpolation definition defined for and utilized in the FSM is displayed in Figure 3. 110 

 

 

Figure 3: Overview of the most common approximation and interpolation methods used for datasets of the FSM. 

 

2.2 Spatio-Temporal Interpolation and Approximation of Bathymetric Datasets 115 

Spatial interpolation or approximation of bathymetric data sets in the FSM follows the well-known and fundamental concept 

of the linear combination of a weighting factor from a so-called base function and the data points elevation information. The 
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base function is generally dependent on the spatial position of the data point and commonly produces weighting factors 

based on distances between data points and points to be interpolated or approximated. Both interpolation and approximation 

follow therefore Eq. (1), where �̂�(�⃗�) is the interpolated or approximated elevation at a position �⃗�, φ𝑝𝑖(�⃗�) is a weighting 120 

factor for point 𝑝𝑖, which commonly returns 1 at point 𝑝𝑖 and 0 for all other points 𝑝𝑘 with 𝑖 ≠ 𝑘, 𝑧𝑖 = 𝑧(𝑝
𝑖) is the elevation 

of sample point 𝑝𝑖 and 𝑛 is the number of all data points within the data set. 

 

�̂�(�⃗�) =  ∑φ𝑝𝑖(�⃗�) ⋅ 𝑧𝑖

𝑛

𝑖=0

 (1) 

 

While both approximation and interpolation methods rely on the same core concept, only interpolation algorithms, as a 125 

special case of approximation, reliably reflect the original data points information at its position. Approximation methods do 

not need to fulfill this requirement. Regardless of the explicit implementation of the method itself, it is imperative to note 

that both interpolated and approximated values that do not coincide with the actual data points are estimations. Survey types 

and consequently interpolation or approximation methods (see Figure 3) define the base functions to be used. 

Temporal interpolation between two data points in time at the same spatial position is equivalent to spatial interpolation, but 130 

instead utilizes not spatial but temporal distances as parameters for the base functions. It is necessary do employ temporal 

interpolation as well, as surveys rarely take place at the desired point in time and even if by coincidence they do regionally, 

on a larger scale it is not reasonably to be expected to have consistent coverage. Due to the generally high density of regional 

bathymetric surveys spatially and temporally, linear temporal interpolation (compare Eq. (1)) between the closest older and 

younger data sets in regard to the point in time and space is determined to be sufficient and subsequently used in the FSM. 135 

Combining both spatial and temporal approaches yields the FSMs first and foremost defining quality: The spatio-temporal 

interpolation. Spatio-temporal interpolation of bathymetric datasets gives the ability to derive an elevation value and 

consequently DTMs at any given point in space and time within the FSMs model boundaries, see Figure 4. 

 

 140 

Figure 4: Concept of spatio-temporal interpolation of bathymetric information. 
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This combination is depicted in Eq. (2), where �̂�(�⃗�, 𝑡) is the approximated or interpolated value at a position �⃗� at a time 𝑡, 

φ𝑖(𝑡) is a weighting factor based on the point in time 𝑡 of data set 𝑖, which commonly returns 1 at time 𝑡𝑖 of data set 𝑖 and 0 

for all 𝑡𝑘 with 𝑖 ≠ 𝑘, and �̂�𝑖(�⃗�) is the interpolated or approximated value at a position �⃗� within data set 𝑖, compare Eq. (1), 145 

and 𝑛 is the number of data sets used. 

 

�̂�(�⃗�, 𝑡) = ∑φ𝑖(𝑡) ⋅ �̂�𝑖(�⃗�)

𝑛

𝑖=0

 (2) 

 

2.3 Spatio-Temporal Interpolation and Approximation of Surface Sedimentological Datasets 

Spatio-temporal interpolation of surface sedimentological data sets is met with additional obstacles as compared to 150 

bathymetric information. Both the temporal and spatial density of surface sediment data sets, which are comprised of single 

sediment samples with single GSD functions, is much lower. Figure 5 displays the temporal distribution of the 

approximately 45,000 surface sediment samples within the AWZ (compare Figure 2B). 

 

 155 

Figure 5: Temporal distribution of approximately 45,000 surface sediment samples within AWZ. 

Apart from being highly variable, even in one of the years with the most samples taken, 1963, one samples represents on 

average approximately 5.7 km2 in the near coastal environment, which is insufficient. Utilizing all samples for the same 

point in time, however, would provide approximately one sample in 0.5 km2 for the highly dynamic near coastal 

environment, which is in combination with the on average higher spatial density of samples in more active regions, 160 

acceptable. As multiple samples at the same position are virtually non-existent, temporal interpolation as described before 

cannot be applied. Thus, an extrapolation approach was developed that relies on the parametrization of the cumulative GSD 
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function into median grain size, sorting and skewness coefficients after Folk (1980) and an ordinary differential equation as 

an initial value problem. Equation (3) displays the solution as a time-dependent change 
𝜕𝑑50(𝑡)

𝜕𝑡
 of median grain size 𝑑50 for a 

point in time 𝑡, where 𝜆(𝑧𝑏(𝑡)) is a parametrization of depth fuzziness, which reduces influence of elevation changes with 165 

greater depths due to measurement uncertainty, 𝑛(𝑡) is the time-dependent relative surface porosity (see Sect. 2.3), 
𝜕𝑧𝑏(𝑡)

𝜕𝑡
 is 

the step wise sedimentation or erosion rate as derived from all bathymetric data sets at the sample position as a time series, 

𝜎0 is the initial approximated sorting of the surrounding sediment samples and (1. −
𝑑𝑚𝑖𝑛

𝑑50(𝑡)
) and (1. −

𝑑50(𝑡)

𝑑𝑚𝑎𝑥
) are the logistic 

boundaries of 𝑑50. The boundary grain size values 𝑑𝑚𝑖𝑛  and 𝑑𝑚𝑎𝑥 can be approximated analogous to the initial sorting based 

on surrounding sediment samples, as 𝑑𝑚𝑖𝑛 = 𝑑5 ⋅ 0.5 and  𝑑𝑚𝑎𝑥 = 𝑑95 ⋅ 2, respectively. 170 

 

 

Based on the change of the median grain size, the change of sorting and skewness coefficients can be approximated as well. 

With these, the fully continuous cumulative GSD function can be regenerated with Eq. (4), modified after Tauber (1997), as 

a logistic function, where 𝐹(Φ)̂(t)  is the extrapolated cumulative GSD function depending on grain size in Φ  and 175 

extrapolation point in time t, Φ50(𝑡) is the time-dependent median grain diameter in Φ resulting from addition of the initial 

median grain diameter of the original GSD function and the time-dependent change after Eq. (3), 𝜎𝐼 is the approximated 

sorting coefficient and 𝑆𝑘𝐼 is the approximated skewness coefficient (Folk, 1980). 

 

𝐹(Φ)̂(t) = 1 − (1 + 𝑒−1.7⋅(Φ−Φ50(𝑡))⋅(𝜎𝐼−𝑆𝑘𝐼∗tanh(Φ−Φ50(𝑡)))
−1

)
−1

 (4) 

 180 

The combination of this temporal extrapolation allows for subsequent spatial interpolation or approximation as shown in Eq. 

(5), where 𝐹(Φ)̂(�⃗�, t) is the spatio-temporally interpolated GSD function at position �⃗� and time 𝑡, 𝐹(Φ)̂𝑖(t) is the temporally 

extrapolated GSD function at 𝑖 , compare Eq. (4), φ𝑖(�⃗�) is the position dependent weighting factor to 𝐹(Φ)̂𝑖(t), which 

commonly returns 1 at the position of 𝐹(Φ)̂𝑖 and 0 for all other positions of 𝐹(Φ)̂𝑘 with 𝑖 ≠ 𝑘, and 𝑛 is the number of GSD 

functions used in the interpolation or approximation method. 185 

 

𝐹(Φ)̂(�⃗�, t) = ∑φ𝑖(�⃗�) ⋅ 𝐹(Φ)̂𝑖(t)

𝑛

𝑖=0

 
(5) 

 

 

𝜕𝑑50(𝑡)

𝜕𝑡
= 𝜆(𝑧𝑏(𝑡)) ⋅ 𝑑50(𝑡) ⋅ (1 − 𝑛(𝑡)) ⋅

𝜕𝑧𝑏(𝑡)

𝜕𝑡
⋅ 𝜎0 ⋅

{
 
 

 
 (1.−

𝑑𝑚𝑖𝑛
𝑑50(𝑡)

) :    𝑓𝑜𝑟 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 
𝜕𝑧𝐵(𝑡)

𝜕𝑡
> 0

(1.−
𝑑50(𝑡)

𝑑𝑚𝑎𝑥
) :    𝑓𝑜𝑟 𝑒𝑟𝑜𝑠𝑖𝑜𝑛 

𝜕𝑧𝐵(𝑡)

𝜕𝑡
⩽ 0              

 (3) 
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Optimized data storage and access solutions were developed, since potentially up to 95,000 references to fully continuous 

functions had to be handled with acceptable memory usage for each interpolated GSD function in case of global 

interpolations without maximum search radii. The weighting factor φ𝑖(�⃗�) is in this application commonly based on Shepard 190 

spatial interpolation approaches that is further extended by variable search radii depending on the data density around each 

specific sample point and hydrodynamic factors such as bed shear stress data, provided by the second part of this publication 

(Hagen et al., 2021, in review), to introduce anisotropic metrics. Thus, a GSD function can be interpolated at any given point 

in space and time within the FSMs model boundaries, see Figure 6. 

 195 

 

Figure 6: Concept of spatio-temporal interpolation of surface sedimentological information. 

 

2.4 Surface Sediment Porosity 

As utilized in Eq. (3), the surface substrate porosity is an essential factor to consider in development of the sedimentological 200 

surface composition of the ocean floor, as generally a lower porosity leads to a denser material that has higher thresholds to 

erode and consequently leads to less change in elevation and thus after Eq. (3) sedimentological composition. As this is a 

model approach that is continuously developed and adjusted, we are aware that very well sorted fine materials such as silt 

and clay actually increase their total porosity, yet as muds in our data base of surface sediment samples tend to be 

moderately sorted or lower, we determined this effect to be negligible for the current application. Based on the parameters 205 

that can be extracted or extrapolated from the data base, Eq. (6) is modified after Wilson et al. (2018) to adjust porosity 𝑛 for 

sorting coefficient σ in combination with the median grain size 𝑑50, where wc(𝑑50) is the settling velocity after Wu and 

Wang (2006). 

 

𝑛 = 10

−0.435+0.366⋅(
1

1+𝑒
(
−log10(𝑑50)+1.227

−0.27 )
)

⋅
1

(1 + σ ∗ wc(𝑑50))
 

(6) 

 210 
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3 Products 

3.1 Gridded base products 

By employing spatial and temporal interpolation as described in Sect. 2, the FSM was used 21 bathymetric digital terrain 

models (DTM) for the German Bight ranging from 1996 to 2016 with validity dates on 01.07., respectively. Each DTM is 

provided as a structured grid with elevation data in a GeoTiff format with a spatial grid resolution of 10 m (EPSG 25832). 215 

Furthermore, a 100 m structured grid of the AWZ is provided for 01.07.1996, see Figure 7a. 

 

 

Figure 7: Exemplary base products for 1996 for (a) bathymetry, (b) surface sedimentology painted as median grain diameter.  

 220 

By employing spatial and temporal interpolation and extrapolation as described in Sect. 2, the FSM was used to generate 

three surface sedimentological models for the German Bight for 1996, 2006 and 2016, with validity dates on 01.07., 

respectively. Each surface sedimentological model is provided to users serving as a base data set for individual analysis 

applications as a structured grid as a CSV-file in EPSG 25832 with a spatial grid resolution of 100 m. Each file contains the 

model information in a 0.25-phi discretized cumulative GSD function, as well as coordinates and meta data such as date of 225 

validity. Furthermore, a 250 m structured grid of the EEZ is provided for 01.07.1996, see Figure 7b represented by a further 

analysis of the cumulative function (see also later sections): The median grain size 𝑑50 in mm. 

3.2 Polygonal base products 

Basic bathymetric and surface sedimentological information is in practice often utilized in form of polygonal isoline. We 

thus generated isobaths for each bathymetric DTM in full spatial coverage in 0.5 m steps for high resolution analyses and 230 

10 m steps for general display purpose. Additionally, each median grain diameter (𝑑50) gridded product is provided with 
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polygonal representation as well. As the 𝑑50  is provided in metric scale, a logarithmic discretization for the isolines is 

required and utilized as defined by the German language version standard DIN EN ISO 14688 (Deutsches Institut für 

Normung, 2018), which defines grain size fractions on a logarithmic scale. 

3.3 Gridded analysis products 235 

Based on the DTM products, geomorphological analyses i.e. the development of elevation, minimum and maximum 

elevation and their range (termed as the bed elevation range (Figure 8a) by Winter, 2011), are performed.  

The bed elevation range provides valuable insight into recent morphological activity, as a high value imply strong 

morphological activity over the analysis time span. The morphological drive (MD, Figure 8b) further expands on the concept 

of stability by using rates of elevation changes instead of absolute changes, which helps to assess whether an area was 240 

affected by gradual (e.g. tidal dynamics) or sudden (e.g. storm surges) change 

 

 

Figure 8: Bathymetric gridded analysis products, (a) bed elevation range, (b) morphological drive.  

 245 

Further sedimentological analyses utilize the full cumulative GSD function from the base products. Based on grids with the 

same extent and resolution as the base products, calculation of the median grain size d50 in mm, the sorting coefficient σ after 

Folk (1980), the skewness coefficient 𝑆𝑘 after Folk (1980) and the porosity 𝑛, see Eq. (6), were performed (Figure 9). 
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 250 

 

Figure 9: Sedimentological analysis products 1996: (a) median grain size d50, (b) skewness, (c) porosity, (d) sorting coefficient.  

 

3.4 Polygonal analytical products 

For display purposes, sedimentological maps can be produced by a classification of grid points to their linguistic description 255 

of their respective cumulative GSD function. The concept of generation of a (quasi-)bijective linguistic description from a 

function (Sievers et al., in prep.) is based on a reversal of initial concepts from Voss (1982) and Naumann et al. (2014). It 

relies on the definition of grain size classes and respective percentages within the cumulative function relative to each other 

to determine a description that would adequately regenerate the original GSD function. With respect to mostly German 
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stakeholders, the German description format “SEP3” based on grain size classification after standards DIN 4022 and German 260 

language version DIN EN ISO 14688 (Deutsches Institut für Normung, 2011, 2018) is used as the target description 

structure.  

While Voss (1982) and Naumann et al. (2014) solely focus on SEP3, the developed reversal of their process could be 

transferred to multiple other description formats as well. In a similar concept to the Figge grain size classification maps 

(Figge, 1981), the description is then split into main and sub components to reduce the number of possible combinations to 265 

be displayed. The grid points of these data sets are then summarized into polygonal maps of main and sub component 

A major advantage of these so called petrographical maps is that a cumulative GSD function can be reconstructed by 

recreating a full description from main and sub component descriptions following Naumann et al. (2014) at every single 

point within the map, without the need to store excessive spatial position data. For each base model, two sets of 

petrographical maps are created, one in the long, fully bijective form (i.e. a full description is stored) and a short form (i.e. 270 

only the first main and first sub component is stored), which is displayed in Figure 10.  

 

 

Figure 10: Petrographical maps after German SEP3 standard, short form 1996: (a) main components, (b) sub component 

  275 
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4 Plausibility Evaluation Products for Gridded Bathymetric Base Products 

Commonly, it is not published with a DTM what data sets where used in its creation. A notable exception in this case is 

EMODnet Bathymetry (www.emodnet-bathymetry.eu), where the possibility to view certain meta data to data sets used for 

generating the DTM is provided. We aim to make the process of DTM generation fully transparent. As a consequence, each 

DTM itself generated by the FSM has specific meta data attached to it, which may give information about possibilities and 280 

limitations for certain users and their desired applications. They include common information such as: 

 

1. Dataset title 

2. Spatial extent and coordinate reference system, commonly in EPSG notation 

3. Elevation range and height reference system, commonly in linguistic notation 285 

4. Short description for potential additional information 

5. Interpolation or approximation methods optimal for this data set and possible parameters 

6. Data provider and their contact information 

7. Date or time span of validity 

 290 

Additionally, the FSM has the ability to further provide metadata that allow for an evaluation of validity and reliability of the 

DTM. We supply data density maps and a set of data source maps, which are provided with each single DTM as separate 

datasets. 

4.1 Data Density Maps 

Data density maps are gridded datasets in identical extent and resolution to its DTM and hold information about the spatial 295 

resolution of the underlying spatio-temporally interpolated bathymetric surveys (Figure 11a). The definition of resolution of 

a field survey is based on their structure, refer to Figure 3. For bi-linear grids it is determined to be the grid cell length, for 

unstructured datasets with elements it is the mean edge length or elements connected to the point and for unstructured 

datasets without elements it is the search radius as defined in the interpolation or approximation method (e.g. Shepard-

interpolation). A low value is thus equivalent to a high resolution and is usually correlated with a higher quality, as they tend 300 

to be from newer datasets close to or on land and are generally measured with more precise technology with relatively low 

uncertainty or error, such as airborne laser scanning or multi-beam hydrographic surveys. 

4.2 Data Source Maps 

Data source maps are polygonal datasets which hold the metadata of the survey datasets used for spatio-temporal 

interpolation of each individual point inside a DTM. As previously explained, spatio-temporal interpolation in the FSM 305 

utilizes two datasets for each point before and after the interpolation date, thus two data source maps for datasets used before 
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and after the interpolation date, respectively, are provided. To reliably trace provenance of a single elevation value within the 

DTM, both maps are to be considered. In this context, the provided metadata for each dataset utilized in interpolation are 

unique identifying IDs within the FSM, the name of the dataset, type and subtype of datasets (implicitly defining 

interpolation or approximation methods), data source organizations and date or time span of validity, compare Figure 11b. 310 

Especially the date or time span of validity is of high interest, as higher temporal distances to older and younger datasets 

employed in spatio-temporal interpolation may imply lower reliability for a specific area, compared to other areas in the 

DTM with lower distances. Data source maps are an especially valuable tool for general quality assurance of a DTM, as 

potential implausible elevation values in the DTM can be traced back to the original survey datasets, in which a correction of 

potential erroneous information may be performed. 315 

The generation of the data source map as such takes place during the spatio-temporal interpolation of the DTM, when each 

point of the model is individually handled. Attached to the calculation of the elevation itself, the meta data of the older and 

younger datasets used are stored in a grid of equal size and resolution as the DTM. After the DTM is successfully generated, 

an algorithm creates boundary polygons for each meta data group, which adhere to common multipolygon logic, in that a 

polygon shell can have holes that contain another meta data polygon. The traceability of density, interpolation method and 320 

source data set for each individual elevation value of each DTM provides in our belief full transparency regarding potential 

user applications. 

 

 

Figure 11: Plausibility products 2016: (a) data density map, (b) data source map (before) with the survey type as displayed 325 
attribute. 
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5 Data availability 

All data sets are open access and available for download as GeoTIFF / ESRI shape files (Geomorphology and bathymetry: 

10.48437/02.2020.K2.7000.0001 Sievers et al., 2020a; Sedimentology: 10.48437/02.2020.K2.7000.0005, Sievers et al., 

2020b) and additionally as web map (WMS), web feature (WFS) and web coverage services (WCS) for direct integration 330 

into a GIS application. 

• Geomorphology and bathymetry WMS: http://mdi-dienste.baw.de/geoserver/EasyGSH_Bathymetrie/wms 

• Geomorphology and bathymetry WFS: http://mdi-dienste.baw.de/geoserver/EasyGSH_Bathymetrie/wfs 

• Geomorphology and bathymetry WCS: http://mdi-dienste.baw.de/geoserver/EasyGSH_Bathymetrie/wcs 

• Surface sedimentology WMS: http://mdi-dienste.baw.de/geoserver/EasyGSH_Sediment/wms 335 

• Surface sedimentology WFS: http://mdi-dienste.baw.de/geoserver/EasyGSH_Sediment/wfs 

• Surface sedimentology WCS: http://mdi-dienste.baw.de/geoserver/EasyGSH_Sediment/wcs 

The project website (https://mdi-de.baw.de/easygsh/, last accessed 12th March, 2021) additionally provides a preview web 

application for the presented data sets. 

6 Conclusions and Outlook 340 

The produced data are at writing of this publication temporally and spatially the most consistent and continuous available 

with the highest temporal and spatial resolution and versatility for the German Bight, as no fixed interpretation especially in 

surface sedimentological data is applied. Numerous new methodologies and validation approaches were developed and 

implemented, such as the morphological drive and petrographical surface sediment maps. The described Functional Seabed 

Model (FSM), as a data-based hindcast simulation model for the bathymetric development of the subaquatic surface and its 345 

sedimentological composition, was formed and expanded over a time span of over a decade. As it was designed to be highly 

modular, it can therefore be expanded with new components very easily. Currently, the integration of the subsurface 

sediment composition of the morphologically active or activatable space is under development (see methodology excerpt in 

conference presentation Sievers et al., 2020) in the publicly funded KFKI project “Stratigraphic Model Components for the 

Improvement of High-Resolution and Regionalized Morphodynamic Simulation Models” (SMMS) in cooperation with the 350 

German Federal Waterways Engineering and Research Institute and the Federal Maritime and Hydrographic Agency of 

Germany. SMMS aims to provide consistent and continuous stratigraphical data of the sub-seafloor and adjacent estuaries to 

further improve the ability of hydrodynamic numerical model systems to assess erosional processes. Additionally, ecological 

model components (see methodology excerpt in conference presentation Rubel et al., 2020) are developed in connection to 

the publicly funded KFKI project “Roughness effects of oyster reefs and blue mussel beds in the German Wadden Sea” 355 

(BIVA-WATT). With this, we aim to be able to provide the most comprehensive synoptic base and validation data for 

numerous morphodynamic model systems and other general applications. 
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